Holomorphic Continuation of Generalized Jacquet Integrals for Degenerate Principal Series
نویسنده
چکیده
This paper introduces a class of parabolic subgroups of real reductive groups (called “very nice”). For these parabolic subgroups we study the generalized Whittaker vectors for their degenerate principal series. It is shown that there is a holomorphic continuation of the Jacquet integrals associated with generic characters of their unipotent radicals. Also, in this context an analogue of the “multiplicity one” theorem is proved. Included is a complete classification of these parabolic subgroups (due to K. Baur and the author). These parabolic subgroups include all known examples of such continuations and multiplicity theorems.
منابع مشابه
Integral Representation of Whittaker Functions
Here W is in the Whittaker model W(π, ψ) of a unitary generic representation π of GL(n, F) and W ′ in W(π ′, ψ) where π ′ is a unitary generic representation of GL(n − 1, F) (see below for unexplained notations). One of the difficulties of the theory is that the representations π and π ′ need not be tempered. Thus one is led to consider holomorphic fiber bundles of representations (πu) and (π ′...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملAnalytic Continuation of Equivariant Distributions
We establish a method for constructing equivariant distributions on smooth real algebraic varieties from equivariant distributions on Zariski open subsets. This is based on Bernstein’s theory of analytic continuation of holonomic distributions. We use this to construct H-equivariant functionals on principal series representations of G, where G is a real reductive group and H is an algebraic sub...
متن کاملDegenerate Principal Series Representations and Their Holomorphic Extensions
Let X = H/L be an irreducible real bounded symmetric domain realized as a real form in an Hermitian symmetric domain D = G/K. The intersection S of the Shilov boundary of D with X defines a distinguished subset of the topological boundary of X and is invariant under H and can also be realized as S = H/P for certain parabolic subgroup P of H . We study the spherical representations Ind P (λ) of ...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کامل